Considerable attention has been given for monitoring and simulating the impacts of global environment change on forest watershed hydrology. Therefore, the purpose of this study is to integrate the remote sensing techniques, the general circulation models(GCMs), and the Markov model to investigate the effects of land use change and climate change on the Dan-Shui watershed, moreover, to compare the difference of stream flow simulations under various GCMs scenarios(i.e., CGCM1 and HADCM3).The processes were as follows: Land-use maps of the Dan-Shui watershed were firstly generated using hybrid classification and Landsat-5 images in 1995 and 2002. The study area was classified into 5 land-use types. They are forest-land, building, farm-land, baring farm-land, and water body. Secondly, the Markov model built based on those land-use data was applied to predict future land-use changes, furthermore, the generated results were used to estimate the cover coefficients (CV) of evapotranspiration based on future conditions and the GWLF water balance model. Results from the Markov prediction indicated that the area of building increased from 17.71% in 1995 and 20.17% in 2002 to 40.24% in 2030, 48.91% in 2058, and 58.16% in 2086. In addition, the estimations of the CV showed that the value decreased gradually from 0.726 and 0.704 to 0.558, 0.478 and 0.408. Finally, the GWLF model was integrated with the Markov predictions to analyze the influence of future land-use changes and climate changes on stream flow simulation under the CGCM1 and HADCM3 scenarios, and also to assess the impacts on the watershed. The results indicated that, due to the increase of building area and the decrease of the CV value, monthly stream flow, monthly average stream flow, and annual total stream flow all changed under two climate change scenarios, regardless of the short-, middle- or long-term simulation,. Furthermore, land-use changes and climate changes would lead to increase the occurrences of floods.