High Definition (HD) Maps are highly accurate 3D maps that contain features on or nearby the road that assist with navigation in Autonomous Vehicles (AVs). One of the main challenges when making such maps is the automatic extraction and classification of road markings from mobile mapping data. In this paper, a methodology is proposed to use transfer learning to extract and classify road markings from mobile LiDAR. The data procedure includes preprocessing, training, class extraction and accuracy assessment. Initially, point clouds were filtered and converted to intensity-based images using several grid-cell sizes. Then, it was manually annotated and split to create the training and testing datasets. The training dataset has undergone augmentation before serving as input for evaluating multiple openly available pre-trained neural network models. The models were then applied to the testing dataset and assessed based on their precision, recall, and F1 scores for extraction as well as their error rates for classification. Further processing generated classified point clouds and polygonal vector shapefiles. The results indicate that the best model is the pre-trained U-Net model trained from the intensity-based images with a 5 cm resolution among the other models and training sets that were used. It was able to achieve F1 scores that are comparable with recent work and error rates that are below 15%. However, the classification results are still around two to four times greater than those of recent work and as such, it is recommended to separate the extraction and classification procedures, having a step in between to remove misclassifications.