The standard orthorectification process takes a lot of manpower and time to obtain control points. To correctly represent the image geometry on satellite images and improve the efficiency of satellite image orthorectification, a novel method for automatic satellite image orthorectification is proposed. In this study, a robust satellite image matching process is processed to obtain image control points, which adopted. Different from traditional labor-intensive methods, a novel image matching method is adopted to find image control points both on target images and an orthorectified reference image, which is adopted self-supervised deep learning image matching algorithm. This strategy makes the ortho-rectification process become automatic, robust, and attempts to distinguish more salient features than traditional methods in satellite images. The experimental results show that the automatic orthorectification process is not only stable but also adaptable. The quantity assessment is performed using root mean square error, and the accuracy of satellite image orthorectification result is 2 to 4 pixels under the 2-meter spatial resolution of FORMOSAT-5 images.